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Abstract
The present work studies the behaviour of continuous time quantum walks
on regular hyperbranched fractals, whose centre is a trap. We focus on the
variations of the eigenvalue spectrum of the transfer operator by tuning the trap
strength from zero to infinity. We show that the degenerate eigenvalues are
independent from the trap strength and can be obtained analytically. Due to
this the mean survival probability is just in the intermediate range affected by
the trap strength; moreover, because of the presence of real eigenvalues, the
asymptotical probability of being outside the trap is not zero.

PACS numbers: 05.60.Gg, 05.40.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The trapping problem is a fundamental and long-standing topic in many fields of science
ranging from physics to biology, plant physiology, etc, . . .. Recent studies applied this problem
to quantum networks for phenomena where coherent dynamical processes are involved such
as ultracold Rydberg gases [1, 2] as well as photosynthetic processes [3–5]. The coherent
exciton transfer is well described by the quantum-mechanical version of random walks, the
so-called quantum walks [6–8]. There are two kinds of quantum walks: the walks which
occur at discrete time steps and the continuous time quantum walks (CTQWs). In this work,
CTQWs are applied to regular hyperbranched fractals (RHFs) with a central trap to simulate
fractal harvesting dynamics. We focus on the relationship between the eigenvalue spectrum of
the transfer operator and the trap strength γ . The value of γ only partially affects the spectrum.
The meaning of this property becomes clear calculating, e.g., the mean survival probability
[1, 9]. The paper is so structured: in section 2 one recalls the basis of CTQWs, while in

1751-8113/09/225003+10$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/22/225003
mailto:antonio.volta@unibo.it
http://stacks.iop.org/JPhysA/42/225003


J. Phys. A: Math. Theor. 42 (2009) 225003 A Volta

section 3 is given a description of the RHFs. Section 4 analyses the eigenvalue spectrum
of the transfer operator developing the problem in three steps: γ = 0, 0 < γ < ∞ and
γ → ∞. The consequences of the different spectra are then shown in section 5 by calculating
the mean survival probability. In section 6 a possible application to photosynthetic complexes
is proposed. Finally in section 7 the conclusion is provided.

2. Continuous time quantum walks

In this section we provide an overview of the continuous time quantum walks. This
mathematical tool is used to describe coherent quantum–mechanical transport. Let us start
introducing (classical) continuous time random walks (CTRWs). The CTRWs are described
by the master equation [10–12]

d

dt
pk,j(t) =

∑
l

Tklpl,j(t), (1)

where pk,j(t) is the conditional probability to find the walker at time t at node k being
pk,j(0) = δkj and T = (Tkl) the transfer operator. For unbiased CTRWs without traps, one
has equal rates to transfer from one node to one of the nearest neighbours, set for simplicity
in the following equal to 1. Under these assumptions, the transfer operator T0 = (T0kj ) is
reduced to the simple form T0 = −A0, where A0 is the discrete form of the Laplacian operator,
i.e., the so-called connectivity matrix [13]. A0 is such that its off-diagonal elements Aij are
−1 if i and j are connected and 0 otherwise (note that in modulus they are the same of the
adjacency matrix [14]). The diagonal elements are A0ii = −∑′N

j=1 A0ij where the prime
excludes the case j = i from the sum. Hence A0 results a real symmetric matrix.

The passage to CTQWs is done by identifying the transfer operator with the Hamiltonian
of the system, i.e., H0 = −T0, see [7, 15, 16]. As remarked in [15] this is not the only way
to define CTQWs. In fact, for certain graphs there is some freedom in defining the diagonal
elements of the Hamiltonian. Moreover for regular networks, i.e., for networks where all
nodes have the same functionality or degree [17], the same quantum dynamics is obtained by
different choices of Hamiltonian which anyhow must be a unitary operator. The idea is that
we have N orthonormal |j〉 states localized at each corresponding node, that form a basis set
which cover the whole accessible Hilbert space, i.e., 〈k|j〉 = δkj and

∑
j |j〉〈j| = 1, with

1 being the identity operator. The transition amplitude from the initial state |j〉 to state |k〉
obeys the Schrödinger equation (for simplicity we set h̄ ≡ 1)

i
d

dt
αk,j(t) =

∑
l

Hklαl,j(t), (2)

which gives rise to the formal solution

αk,j(t) = 〈k| exp(−iHt)|j〉. (3)

The transition probability is given by the square of αk,j(t), i.e., πk,j(t) = |αk,j(t)|2. Although
there exists a formal similarity between CTWRs and CTQWs, quantum mechanically it holds∑

k π2
k,j(t) = 1 instead of

∑
k pk,j(t) = 1, see also [18].

3. The structure

Regular hyperbranched fractals (RHFs) [9] of generation g = 3 and functionality f = 3, 4
are displayed in figure 1. The RHFs with functionality f = 4 are known also as Vicsek
fractals [19]. To build these kind of structures one takes the object of generation g = 1, i.e.,
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Trap
Trap

(a) (b)

Figure 1. Regular hyperbranched fractals of generation g = 3 for functionality f = 3 (a) and
functionality f = 4 (b). The central node of the structure is the trap site.

a star structure with the core connected through f branches to f external nodes. The next
generation g = 2 is obtained by binding to the external nodes f identical copies of itself
through f bonds; we get so a new starwise pattern of (f + 1)2 nodes, see [13, 20] for more
details. The same procedure is repeated until to reach the required size of (f + 1)g sites. The
fractal dimension depends on the functionality f as follows:

d̄r = ln(f + 1)

ln 3
. (4)

4. Evaluation of the T spectrum

The spectrum of T is responsible for many dynamic properties for both classical networks and
quantum networks [21–23]. We analyse the eigenvalue spectrum of RHFs in three different
steps in order to underline the special behaviour when γ = 0 and γ → ∞.

4.1. RHFs without trap

We first consider the unperturbed case, i.e., when H is equal to H0. We report here an algebraic
iterative procedure found by Blumen et al in [13, 20], which reduces the general eigenvalue
problem to the solution of cubic equations. This is due to the fact that the RHFs rescale under
a real space renormalization transformation, see [20, 24] for details. Knowing the eigenvalues
of the RHFs at generation g one obtains the eigenvalues of generation g + 1 through

P
(
λ

(g+1)

i

) = λ
g

i , (5)

where P(λ) is the polynomial

P(λ) = λ(λ − 3)(λ − f − 1). (6)

We set P(λ) = a and equation (6) is recombined so that it reads

λ3 − (f + 4)λ2 + 3(f + 1)λ − a = 0. (7)
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Introducing

p = 1
3 [f (f − 1) + 7] , (8)

q = 1
27 (5 − f )(f + 4)(2f − 1) (9)

and

ρ = |p/3|3/2, (10)

the roots of equation (6) are given by the Cardano solutions

λν = (f + 4)/7 + 2ρ1/3 cos[(φ + 2πν)/3)] with ν ∈ {1, 2, 3}. (11)

Except λi = 0, each eigenvalue of generation g gives rise to three new eigenvalues. The
non-degenerate eigenvalues include λ = 0, λ = (f + 1) and other eigenvalues generated by
the ‘seed’ λ = (f + 1). This means that for example, at the second generation of the fractal,
we have five non-degenerate eigenvalues, i.e., the above-mentioned λ = 0, λ = (f + 1) and
the three 1’s obtained by substituting a = (f + 1) into equation (7). The degeneracy of
the degenerate eigenvalues depends on the generation where they appeared for the first time;
λ = 1 results the most present with occurrence given by


g = (f − 2)(f + 1)g−1 + 1. (12)

4.2. RHFs with central trap

Let us put a trap in the centre of the network (node 1) by following an approach based
on perturbation theory [1, 25–27]. In mathematical terms, we deal with a new Hamiltonian
H = H0 +iΓ, where �mn = γ δ1mδ1n. H is a complex symmetric matrix, therefore, if the matrix
is diagonalizable, we have an orthonormal set of eigenvectors [28] as in the real case. The
eigenvalue spectrum of H presents, as in the unperturbed case, degenerate and non-degenerate
eigenvalues. Because of the non-Hermiticity of the operator, in general we get N complex
eigenvalues λl = εl − iγl . The diagonalization of H up to g = 5 was computed using the
Fortran the routine RS of the EISPACK package [29] for γ = 0 and the routine CS see [30]
otherwise. The strength of γ was varied throughout the range 0 < γ < ∞. What we found
out is that only the non-degenerate eigenvalues depend on γ . This means that the degenerate
eigenvalues are the same of H0, so that they can be calculated as in section (4.1). Such a
property results clear looking at the eigenvectors. In fact following the idea of Jayanthi and
Wu in [19] the eigenvectors with central displacement equal to 0 give rise to degenerate modes.
In our case if the first component of the eigenvector is 0, then the imaginary operator Γ is not
involved in the calculation of the eigenvalues. Now we can also easily see why the matrices
associated with perturbed RHFs are always diagonalizable. A complex symmetric matrix is
not diagonalizable if we have at least one isotropic eigenvector, i.e., a self-orthogonal vector z,
which satisfies the relationship zzT = 0. An isotropic eigenvector can be associated only with
eigenspaces of dimension larger than one [31]. The possibility to have an isotropic eigenvector
is excluded because the degenerate eigenvalues depend only on A0, which is a real symmetric
matrix, whose eigenvectors do not fulfil the self-orthogonality condition.

We split the analysis of what happens into the imaginary part and the real part of the
eigenvalues. To assist the reader, in the next three figures each eigenvalue is always associated
with the same colour in all plots. Figure 2 shows

γi∑
l γl

= γi

T r(Γ)
= γi

γ
� 1, (13)

4



J. Phys. A: Math. Theor. 42 (2009) 225003 A Volta

(a)

(b) (d)

(c)

Figure 2. Contributions of the ratios γl/γ for RHFs of generation 2 and functionality 3 with
different trap strengths. Cake plot (a): γ = 0.5, λpurple = 4.5138 + i0.2000 and γpurple/γ =
40%. Cake plot (b): γ = 1, λpurple = 4.3519+i0.4506 and γpurple/γ = 45%. Cake plot (c): γ = 4,

λpurple = 3.2606 + i3.2250 and γpurple/γ = 81%. Cake plot (d): γ = 10, λpurple = 3.0316 +
i9.6971 and γpurple/γ = 97%.

for RHFs of generation g = 2 and functionality f = 3 for γ = 0.5 (a), γ = 1 (b), γ = 4 (c)
and γ = 10 (d). Just the five non-degenerate eigenvalues contribute as expected. Let us call
the eigenvalue with the biggest imaginary part λpurple = εpurple + iγpurple corresponding to the
purple portion of the cake plots of figure 2. The bigger γ , the more concentrated contribution
in just γpurple. Thus the relationship γpurple/γ � 1 holds for big γ , see figure 2(d). In
figure 3 the behaviour of γl of non-degenerate eigenvalues is shown except γpurple. As we can
see all four curves reach a maximum for γ between 0.8 and 4 and then start to decrease. This
behaviour will appear important to understand the basic result of section 5. In figure 4, the real
part of the eigenvalues εl is plotted versus γ for RHFs of generation g = 2 and functionality
f = 3. The constant dashed red lines are associated with degenerate eigenvalues that confirm
its independence from γ . The solid lines represent the behaviour of the εl associated with
non-degenerate eigenvalues. We note a convergence of four of these to the dashed lines when
γ increases. Only εpurple has negative derivative and decreases from εpurple = maxεl

εl to
εpurple = f . We chose to plot referred to RHFs of low functionality and low generation in
order to make clearer the phenomenon. Anyhow we noted numerically similar behaviour up
to generation g = 5 for functionalities f = 3, 4.
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Figure 3. γl versus γ for RHFs of f = 3 and g = 2. The four functions show the behaviour of
the non-degenerate eigenvalues except γpurple. The colours help to associate γl of this figure with
γl of the same colour of figure 2.
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ε l

Figure 4. εl versus γ for RHFs of f = 3 and g = 2. The purple, yellow, orange, green and
blue solid lines represent εl corresponding to γl of figure 2. The red dashed lines represent the
degenerate eigenvalues constant with respect to γ .

4.3. Limiting case: γ → ∞
If γ tends to infinity, then λpurple assumes the value λpurple = f +iγ while the other eigenvalues
assume a real asymptotic value equal to one of the already known degenerate eigenvalues.
Apart from the unique remaining imaginary eigenvalue, we will get for each eigenvalue a
degeneracy multiple of f , like in [9]. This can be easily demonstrated for RHFs of first
generation. In fact it can be shown that the characteristic polynomial of H associated with an
RHF with functionality f looks

(1 − λ)f −2(λ2 − (1 + f + iγ )λ + iγ ) = 0. (14)
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The roots of equation (14) are λ = 1, (f − 2)-times degenerated and

λ+− = 1 + f + iγ ±
√

−γ 2 + 2iγ (f − 1) + (f − 1)2 + 4f

2
. (15)

Inside the square root of equation (15) we can neglect 4f 	 γ 2 and it becomes straightforward

λ+− 
 1 + f + iγ ±
√

[iγ + (f − 1)]2

2
= 1 + f + iγ ± [iγ + (f − 1)]

2
=

{
f + iγ
1.

(16)

In summary for the first generation, when γ → ∞ the eigenvalue 1 appears (f − 1)-times
and f + iγ once.

5. Mean survival probability

The ideal experiment would be performed by exciting exactly one node j �= 1 at time t = 0
and to monitor the probability πk,j(t) to be at node k �= 1 at time t. Nevertheless it is easier to
keep track of the total outcome at all no trap nodes

∑
k �=1 πkj(t). The complete orthonormal

basis set
∑

k �=1 |k〉〈k| = 1 − |1〉〈1| leads to, see [1],

∑
k �=1

πk,j(t) =
N∑

l=1

e−2γl t 〈j|Φl〉〈Φ̃l|j〉 −
N∑

l,l′=1

e−i(λl−λ∗
l′ )〈j|Φl′ 〉〈Φ̃l′ |1〉〈1|Φl〉〈Φ̃l|j〉. (17)

Thus the mean survival probability looks like

M(t) = 1

N − 1

N∑
l=1

e−2γl t [1 − 2〈Φ̃l|1〉〈1|Φl〉] +
1

N − 1

N∑
l,l′=1

e−i(λl−λ∗
l′ )t [〈Φ̃l′ |1〉〈1|Φl〉]2.

(18)

Increasing the fractal generation g, the ratio 1/N becomes very small, which makes
2〈Φ̃l|1〉〈1|Φl〉 	 1, and at long time the oscillating term of equation (18) vanishes. Thus
M(t) is reduced to

M(t) ≈ 1

N − 1

N∑
l=1

exp(−2γlt). (19)

If the smallest γl = γmin is much smaller than the others, then for t � 1/γmin,M(t) =
exp(−2γmint) as shown in [27]. Figure 5 shows the behaviour of M(t) versus time in double
logarithmic scale for different trap strengths for RHFs of generation g = 3 for functionality
f = 3 (a) and f = 4 (b). At short times all curves assume values close to 0 (probability close
to 1). For large t we find a plateau larger than 0 for the presence of real eigenvalues, see also
[32]. In fact there are (3g − 1)/2 + (f + 1)g − 3g real degenerate eigenvalues, see [20], for
which γl = 0 holds. Therefore one can rewrite equation (19) as

M(t) = 1

N − 1

⎡
⎣(3g − 1)/2 + (f + 1)g − 3g +

∑
γl �=0

exp(−2γlt)

⎤
⎦ . (20)

Equation (20) for t → ∞ reads

lim
t→∞ M(t) = 1

N − 1
[(3g − 1)/2 + (f + 1)g − 3g]. (21)

At intermediate time range, there are interesting counterintuitive features of the curves; in fact,
one could think that fast decreases of m(t) correspond to big values of γ . In contrast for
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Figure 5. Mean survival probability of RHFs of generation g = 3 for functionality f = 3 (a) and
functionality f = 4 (b).

deep traps, γ = 10 for instance, the probability decreases later to the plateau. We could also
deduce it from figure 3 because there are (3g − 1)/2 (number of non-degenerate eigenvalues
save λpurple, see also equation (23) of [20]) complex eigenvalues with small positive γl and
thus its corresponding exponential terms of equation (20) vanish at late time.

6. Can CTQWs be useful for plant photosynthesis?

In plant physiology we have two basic questions to answer at different scales: how much can
a plant photosynthesize? How can we measure it? Special complexes inside the leaf harvest
energy from the incoming sunlight radiation and transport it very quickly through the lattice
to special sites, the reactive centres, where the Calvin cycle fixes the atmospheric carbon.
Actually many of the existing and accepted models are based on the theory developed by
Farquhar et al [33] and obtain some fundamental parameters like the electron transfer rate
from experiments but not from a robust quantum theory. The carbon uptake is of course a very
complicated task to forecast because it involves a lot of different variables and environmental
boundary conditions, but CTQWs could help to understand aspects of the light-dependent
reactions of photosynthesis. Moreover, an open issue for the community is to determine how
to connect the so-called SIF (solar induced fluorescence) outcoming from plants (a portion of
the untrapped energy) with the carbon uptake (related to the energy entered into the reactive
centres) [34, 35]. It is then important to know the ratio between the trapped and the untrapped
energy and in this framework CTQWs can result useful.

7. Conclusion

In summary, in this work we focused on the eigenvalue spectrum of regular hyperbranched
fractals of general functionality f with central trap. The first goal is that the degenerate
eigenvalues are real, independent from the trap strength and analytically calculable. These
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real eigenvalues bring to the final plateau of the mean survival probability larger than zero.
The imaginary eigenvalues are non-degenerate and for deep traps just one has a big imaginary
part while the imaginary part of the others tends to zero. This fact causes the delay to attain
the final plateau of the mean survival probability. It was also discovered and demonstrated
only for g = 1 that for infinitely deep traps, just one eigenvalue is imaginary while the others
are real and appear with occurrence multiple of f . Finally we noted that: (a) the network
symmetries, which determine the degeneracy of the eigenvalues, influence the final probability
of being outside the trap. (b) The perturbative parameter γ modifies the rate of the harvesting
process. Hence the perturbed quantum walks might be a good tool to study the kinetics of the
light-dependent reactions in plant photosynthesis.
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